相同地形的不同卫星图像的相对辐射归一化(RRN)对于改变检测,对象分类/分割和映射任务是必要的。但是,传统的RRN模型不强大,通过对象变化扰乱,并且RRN模型精确考虑对象变化无法鲁布布地获取无更改集。本文提出了通过潜在变化噪声建模的自动稳健的相对辐射归一化方法。它们利用先验知识,即在相对辐射尺度化下没有变化点具有小尺度噪声,并且在辐射归一化之后,变化点具有大规模的辐射噪声,组合随机期望最大化方法快速且强大地提取No-Change集以学习相对辐射归一化映射映射函数。这使我们的模型在理论上就是关于概率理论和数学扣除的基础。具体地,当我们选择直方图匹配作为与高斯噪声(HM-RRN-RRN-RRN-MOG)混合的相对辐射算法学习方案(HM-RRN-MOG)的相对辐射归一化学习方案,HM-RRN-MOG模型实现了最佳性能。我们的模型具有强大地反对云/雾气/变化的能力。我们的方法自然地为RRN生成一个强大的评估指示器,即No-Change Set Totor Square error。我们将HM-RRN-MOG模型应用于后一种植被/水变化检测任务,这减少了无辐射对比度和NDVI / NDWI对无变化集的差异,产生了一致和可比的结果。我们利用No-Change集合到建筑物变更检测任务中,有效地减少了伪变化并提高了精度。
translated by 谷歌翻译
基于能量的模型(EBMS)为密度估计提供了优雅的框架,但它们难以训练。最近的工作已经建立了与生成的对抗网络的联系,eBM通过具有变分值函数的最小游戏培训。我们提出了EBM Log-似然的双向界限,使得我们最大限度地提高了较低的界限,并在解决Minimax游戏时最小化上限。我们将一个绑定到梯度惩罚的一个稳定,稳定培训,从而提供最佳工程实践的基础。为了评估界限,我们开发了EBM发生器的Jacobi确定的新的高效估算器。我们证明这些发展显着稳定培训并产生高质量密度估计和样品生成。
translated by 谷歌翻译
As natural language processing (NLP) for gender bias becomes a significant interdisciplinary topic, the prevalent data-driven techniques such as large-scale language models suffer from data inadequacy and biased corpus, especially for languages with insufficient resources such as Chinese. To this end, we propose a Chinese cOrpus foR Gender bIas Probing and Mitigation CORGI-PM, which contains 32.9k sentences with high-quality labels derived by following an annotation scheme specifically developed for gender bias in the Chinese context. Moreover, we address three challenges for automatic textual gender bias mitigation, which requires the models to detect, classify, and mitigate textual gender bias. We also conduct experiments with state-of-the-art language models to provide baselines. To our best knowledge, CORGI-PM is the first sentence-level Chinese corpus for gender bias probing and mitigation.
translated by 谷歌翻译
Advances in computer vision and machine learning techniques have led to significant development in 2D and 3D human pose estimation from RGB cameras, LiDAR, and radars. However, human pose estimation from images is adversely affected by occlusion and lighting, which are common in many scenarios of interest. Radar and LiDAR technologies, on the other hand, need specialized hardware that is expensive and power-intensive. Furthermore, placing these sensors in non-public areas raises significant privacy concerns. To address these limitations, recent research has explored the use of WiFi antennas (1D sensors) for body segmentation and key-point body detection. This paper further expands on the use of the WiFi signal in combination with deep learning architectures, commonly used in computer vision, to estimate dense human pose correspondence. We developed a deep neural network that maps the phase and amplitude of WiFi signals to UV coordinates within 24 human regions. The results of the study reveal that our model can estimate the dense pose of multiple subjects, with comparable performance to image-based approaches, by utilizing WiFi signals as the only input. This paves the way for low-cost, broadly accessible, and privacy-preserving algorithms for human sensing.
translated by 谷歌翻译
As an important variant of entity alignment (EA), multi-modal entity alignment (MMEA) aims to discover identical entities across different knowledge graphs (KGs) with multiple modalities like images. However, current MMEA algorithms all adopt KG-level modality fusion strategies but ignore modality differences among individual entities, hurting the robustness to potential noise involved in modalities (e.g., unidentifiable images and relations). In this paper we present MEAformer, a multi-modal entity alignment transformer approach for meta modality hybrid, to dynamically predict the mutual correlation coefficients among modalities for instance-level feature fusion. A modal-aware hard entity replay strategy is also proposed for addressing vague entity details. Extensive experimental results show that our model not only achieves SOTA performance on multiple training scenarios including supervised, unsupervised, iterative, and low resource, but also has limited parameters, optimistic speed, and good interpretability. Our code will be available soon.
translated by 谷歌翻译
KL-regularized reinforcement learning from expert demonstrations has proved successful in improving the sample efficiency of deep reinforcement learning algorithms, allowing them to be applied to challenging physical real-world tasks. However, we show that KL-regularized reinforcement learning with behavioral reference policies derived from expert demonstrations can suffer from pathological training dynamics that can lead to slow, unstable, and suboptimal online learning. We show empirically that the pathology occurs for commonly chosen behavioral policy classes and demonstrate its impact on sample efficiency and online policy performance. Finally, we show that the pathology can be remedied by non-parametric behavioral reference policies and that this allows KL-regularized reinforcement learning to significantly outperform state-of-the-art approaches on a variety of challenging locomotion and dexterous hand manipulation tasks.
translated by 谷歌翻译
In this work, we propose a new approach that combines data from multiple sensors for reliable obstacle avoidance. The sensors include two depth cameras and a LiDAR arranged so that they can capture the whole 3D area in front of the robot and a 2D slide around it. To fuse the data from these sensors, we first use an external camera as a reference to combine data from two depth cameras. A projection technique is then introduced to convert the 3D point cloud data of the cameras to its 2D correspondence. An obstacle avoidance algorithm is then developed based on the dynamic window approach. A number of experiments have been conducted to evaluate our proposed approach. The results show that the robot can effectively avoid static and dynamic obstacles of different shapes and sizes in different environments.
translated by 谷歌翻译
Salient object detection (SOD) aims to determine the most visually attractive objects in an image. With the development of virtual reality technology, 360{\deg} omnidirectional image has been widely used, but the SOD task in 360{\deg} omnidirectional image is seldom studied due to its severe distortions and complex scenes. In this paper, we propose a Multi-Projection Fusion and Refinement Network (MPFR-Net) to detect the salient objects in 360{\deg} omnidirectional image. Different from the existing methods, the equirectangular projection image and four corresponding cube-unfolding images are embedded into the network simultaneously as inputs, where the cube-unfolding images not only provide supplementary information for equirectangular projection image, but also ensure the object integrity of the cube-map projection. In order to make full use of these two projection modes, a Dynamic Weighting Fusion (DWF) module is designed to adaptively integrate the features of different projections in a complementary and dynamic manner from the perspective of inter and intra features. Furthermore, in order to fully explore the way of interaction between encoder and decoder features, a Filtration and Refinement (FR) module is designed to suppress the redundant information between the feature itself and the feature. Experimental results on two omnidirectional datasets demonstrate that the proposed approach outperforms the state-of-the-art methods both qualitatively and quantitatively.
translated by 谷歌翻译
Long document retrieval aims to fetch query-relevant documents from a large-scale collection, where knowledge distillation has become de facto to improve a retriever by mimicking a heterogeneous yet powerful cross-encoder. However, in contrast to passages or sentences, retrieval on long documents suffers from the scope hypothesis that a long document may cover multiple topics. This maximizes their structure heterogeneity and poses a granular-mismatch issue, leading to an inferior distillation efficacy. In this work, we propose a new learning framework, fine-grained distillation (FGD), for long-document retrievers. While preserving the conventional dense retrieval paradigm, it first produces global-consistent representations crossing different fine granularity and then applies multi-granular aligned distillation merely during training. In experiments, we evaluate our framework on two long-document retrieval benchmarks, which show state-of-the-art performance.
translated by 谷歌翻译
To improve the performance of the dual-encoder retriever, one effective approach is knowledge distillation from the cross-encoder ranker. Existing works construct the candidate passages following the supervised learning setting where a query is paired with a positive passage and a batch of negatives. However, through empirical observation, we find that even the hard negatives from advanced methods are still too trivial for the teacher to distinguish, preventing the teacher from transferring abundant dark knowledge to the student through its soft label. To alleviate this issue, we propose ADAM, a knowledge distillation framework that can better transfer the dark knowledge held in the teacher with Adaptive Dark exAMples. Different from previous works that only rely on one positive and hard negatives as candidate passages, we create dark examples that all have moderate relevance to the query through mixing-up and masking in discrete space. Furthermore, as the quality of knowledge held in different training instances varies as measured by the teacher's confidence score, we propose a self-paced distillation strategy that adaptively concentrates on a subset of high-quality instances to conduct our dark-example-based knowledge distillation to help the student learn better. We conduct experiments on two widely-used benchmarks and verify the effectiveness of our method.
translated by 谷歌翻译